Skip to main content

Topology and Performance Modeling of Robotic Mechanism

  • Chapter
  • First Online:
Finite and Instantaneous Screw Theory in Robotic Mechanism

Abstract

Topology of a robotic mechanism [1], describing the arrangement of joints including number, sequence, type, and axis (or direction), denotes the basic mechanical structure of the robotic mechanism [2]. Topology determines motion capability thus directly affects the kinematic, stiffness, and dynamic performance of the robotic mechanism [3,4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun T, Song YM, Gao H et al (2015) Topology synthesis of a 1-translational and 3-rotational parallel manipulator with an articulated traveling plate. J Mech Robot Trans ASME 7(3):031015(9 pages)

    Google Scholar 

  2. Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145

    Article  Google Scholar 

  3. Gosselin CM (2002) Stiffness mapping for parallel manipulators. IEEE Trans Robot Autom 6(3):377–382

    Article  Google Scholar 

  4. Merlet JP (1993) Direct kinematics of parallel manipulators. IEEE Trans Robot Autom 9(6):842–846

    Article  Google Scholar 

  5. Gallardo J, Rico JM, Frisoli A et al (2003) Dynamics of parallel manipulators by means of screw theory. Mech Mach Theory 38(11):1113–1131

    Article  MathSciNet  Google Scholar 

  6. Qi Y, Sun T, Song YM et al (2015) Topology synthesis of three-legged spherical parallel manipulators employing Lie group theory. Proc Inst Mech Eng Part C J Mech Eng Sci 229(10):1873–1886

    Article  Google Scholar 

  7. Yang SF, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419

    Article  Google Scholar 

  8. Yang SF, Sun T, Huang T et al (2017) Type synthesis of parallel mechanisms having 3T1R motion with variable rotational axis. Mech Mach Theory 109:220–230

    Article  Google Scholar 

  9. Sun T, Huo XM (2018) Type synthesis of 1T2R parallel mechanisms with parasitic motions. Mech Mach Theory 128:412–428

    Article  Google Scholar 

  10. Sun T, Song YM, Li YG et al (2010) Workspace decomposition based dimensional synthesis of a novel hybrid reconfigurable robot. J Mech Robot Trans ASME 2(3):031009(8 pages)

    Google Scholar 

  11. Sun T, Song YM, Dong G et al (2012) Optimal design of a parallel mechanism with three rotational degrees of freedom. Robot Comput Integr Manuf 28(4):500–508

    Article  Google Scholar 

  12. Lian BB, Sun T, Song YM et al (2015) Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects. Int J Mach Tools Manuf 95:82–96

    Article  Google Scholar 

  13. Sun T, Liang D, Song YM Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans Ind Electron 65(4):3326–3336

    Article  Google Scholar 

  14. Sun T, Lian BB, Song YM et al (2019) Elasto-dynamic optimization of a 5-DoF parallel kinematic machine considering parameter uncertainty. IEEE-ASME Trans Mechatron 24(1):315–325

    Article  Google Scholar 

  15. Sun T, Yang SF, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82

    Article  Google Scholar 

  16. Sun T, Yang SF, Huang T et al (2018) A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chin J Mech Eng 31(2):66–75

    Google Scholar 

  17. Sun T, Yang SF (2019) An approach to formulate the Hessian matrix for dynamic control of parallel robots. IEEE-ASME Trans Mechatron 24(1):271–281

    Article  Google Scholar 

  18. Kong XW, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  19. Hunt KH (1978) Kinematic geometry of mechanisms. Clarendon Press, Oxford

    MATH  Google Scholar 

  20. Angeles J (2014) Fundamentals of robotic mechanical systems: Theory, Methods, and Algorithms, 4th edn. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, T., Yang, S., Lian, B. (2020). Topology and Performance Modeling of Robotic Mechanism. In: Finite and Instantaneous Screw Theory in Robotic Mechanism. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1944-4_3

Download citation

Publish with us

Policies and ethics